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Introducing 
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(Generative Image Rectifier)  
 

 

 

 

 

 

 

 

 

 

 

 



 
 

Abstract 

 
This project is dedicated to detect and rectify the blur present in the image. 

Generally blur occurs either due to the movement of the objects we are trying to 
capture or due to the shutter speed of the camera. Formally we can define blur as 
the smoothing of image pixels resulting in obscure image. 
The model we are building uses three step process –  
Blur detection, in which we are primarily identifying those portions of an image 
which are having blur. In order to make the model more robust, we are preventing 
the flat regions to be misclassified as blur. 
After the detection of the blurs we are classifying it as either motion blur or general 
blur. 
Our final step is to remove the blur. The model is based on a culmination of different 
techniques which includes CNN and fourier transformations to deblur the image. 
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Introduction and Project Overview: 

 
Problem Description and The Task: 

 
The problem statement addressed in this project is image rectification and 
enhancement using a deep learning model. The task involves developing a model 
capable of automatically removing blur and improving image quality for degraded 
images. 
 

Problem Statement: 

 

Images captured under various conditions, such as motion blur, out-of-focus blur, 
and sensor blur, can suffer from degradation, resulting in reduced visual quality and 
loss of important details. The problem is to rectify these degraded images and 
enhance their quality using a deep learning-based approach. 
 

Task: 

 

The primary task of the project is to build a powerful image rectification and 
enhancement model using deep learning techniques. The model will be trained to 
address the following specific challenges: 
 

1. Blur Rectification: The model should be able to identify and rectify different 
types of blur, including motion blur and out-of-focus blur, to restore sharpness 
and clarity in the images. 

2. Blur Reduction: The model should effectively reduce various types of blur, 
such as random blur and sensor blur, to improve the overall visual quality and 
reduce image artifacts. 

3. Feature Preservation: While removing blur, the model must preserve 
important image features, such as edges, textures, and fine structures. 
Preserving features ensures that crucial information in the image remains 
intact after enhancement. 

4. Generalization: The model should be capable of handling images captured in 
different conditions and environments. It should generalize well to unseen 
data and be robust to variations in image content, resolution, and degradation 
levels. 

5. Efficiency and Real-Time Inference: The model should be efficient enough to 
perform real-time or near real-time inference, making it practical for 
applications where quick image rectification is required. 
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Project Overview: Image Rectification and Enhancement: 

The project aims to develop a powerful image rectification and enhancement model 
using deep learning techniques. The model is designed to automatically remove blur, 
and other artifacts from images, leading to enhanced visual quality and improved 
details. 
 

Objectives: 
 

1. Image Restoration: The primary objective of the project is to restore degraded 
images by rectifying blurriness and reducing blur. The model will be trained to 
recover fine details and sharpness in images affected by motion blur, out-of-
focus blur, and other distortions. 

2. Blur Reduction: The model will target various types of blur, such as random 
blur and sensor blur, commonly present in images. By effectively reducing blur, 
the enhanced images will have a higher signal-to-blur ratio, resulting in cleaner 
and clearer visual content. 

3. Feature Preservation: While removing blur the model will aim to retain and 
enhance important image features, such as edges, textures, and fine 
structures. Preserving features ensures that crucial information in the image 
remains intact and facilitates better downstream analysis and interpretation. 

4. Real-World Applicability: The project's focus is to create a practical and 
efficient model that can be applied to a wide range of real-world scenarios. 
The model should be able to handle images captured in different conditions, 
resolutions, and environments. 

 

Goals: 
 

1. Model Architecture: Since we are using a deep learning base model, there is a 
need of Convolution Neural Network (CNN). Here CNN is helping us to rectify 
the image. 

 

 
a.      Architecture of CNN 
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2. Dataset Collection and Curation: Curate a diverse dataset of degraded images 
to train the model. The dataset should include images with various types of 
blurriness, and degradation commonly encountered in real-world scenarios. 

3. Data Preprocessing: Apply suitable data preprocessing techniques, such as 
normalization and augmentation, to ensure efficient and robust training of the 
model. 

4. Model Training and Optimization: Train the image rectification model on the 
curated dataset using appropriate loss functions and optimization algorithms. 
Fine-tune hyperparameters to achieve the best performance. 

5. Evaluation Metrics: Utilize appropriate evaluation metrics, such as MSE (Mean 
Squared Error) and SSIM (Structural Similarity Index), to quantitatively assess 
the performance of the model on a validation dataset. 

6. Real-Time Inference: Aim to achieve real-time or near real-time inference 
speed for practical deployment of the model in various applications. 

7. User-Friendly Interface: A user-friendly interface or application to showcase 
the model's capabilities and allow users to apply image rectification and 
enhancement on their own images. 

8. Comparative Analysis: Conduct a comparative analysis with existing image 
enhancement methods and demonstrate the advantages of the proposed 
model. 
 
Overall, the project's goal is to create an efficient and effective image 
rectification model that can enhance image quality by removing blur and 
preserving essential details. The success of this project holds significant 
potential for various applications in photography, medical imaging, 
surveillance, and many other domains where high-quality images are crucial 
for accurate analysis and interpretation.    

 

Importance and relevance of the project: 

 
The importance and relevance of the image rectification and enhancement project lie 
in its potential to address significant challenges in various domains and improve the 
overall quality and usability of digital images. 
 

1. Enhancing Visual Quality: The project's primary goal is to improve the visual 
quality of degraded images. By removing blur, and preserving important 
features, the model enhances the overall aesthetics of images, making them 
more appealing to viewers. 

2. Accurate Image Analysis: High-quality images are essential for accurate image 
analysis and interpretation. In fields like medical imaging, satellite imaging, and 
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industrial inspection, the project's results can lead to better diagnosis, 
identification of critical features, and informed decision-making. 

3. Photography and Creative Industries: In photography and creative industries, 
the project's image enhancement capabilities can significantly benefit 
photographers, designers, and artists by helping them produce more 
compelling and professional-looking images. 

4. Medical Imaging: In medical imaging, image quality directly impacts diagnostic 
accuracy and treatment planning. The ability to remove blur and rectify blurry 
medical images can aid healthcare professionals in detecting abnormalities and 
providing precise diagnoses. 

 
Visibility and detail capture in challenging lighting conditions. 

 

 
 

5. Social media and User-Generated Content: The project can benefit users 
posting images on social media platforms, where image quality may be 
compromised due to various factors. Image enhancement can lead to a better 
online user experience. 
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6. Historical Image Restoration: In archiving and historical preservation, the 
project can help restore and enhance old or degraded images, preserving 
cultural heritage and historical records. 

 

 
 
Overall, the project's importance and relevance extend to a wide range of fields, from 
medical and industrial imaging to creative industries and social media. By improving 
image quality and facilitating accurate analysis, the project can have a positive impact 
on diverse domains, benefiting professionals, researchers, and end-users alike. 
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Methodology and Approach: 

Dataset and Preprocessing: 
 

Dataset Description: 

 
The dataset used for training the hybrid Fourier-CNN U-Net model consists of a 
collection of high-resolution color images. The images were obtained from various 
sources and cover a diverse range of objects, scenes, and backgrounds. Each image 
has a resolution of 4096x4096 pixels and contains three color channels (RGB). The 
dataset includes a total of N images, where N is the number of samples used for 
training. 
 

Data Split: 

 
For training the Deep Learning model we are the splitting 80% our data set for 
training ,10% for validation and 10% for testing. The 80% of the data that we are 
using for training is used by the Hybrid Fourier CNN U-Net, for tuning the 
hyperparameter 10% data is used and finally 10% data is used  

 

Data Preprocessing: 
 

Before feeding the images into the hybrid Fourier-CNN U-Net model, several 
preprocessing steps were applied to enhance the training process and ensure optimal 
performance: 
 

1. Rescaling:  
For training the neural network model all images must be rescaled within a suitable 
range of 0 and 1. In the normalization step we are dividing the value of each pixel 
value by 255. 

2.  Random Data Augmentation:  
To augment the training data and reduce overfitting, random transformations such as 
horizontal flips, vertical flips, rotations, and zooms were applied to the training 
images using the Keras `ImageDataGenerator` with appropriate augmentation 
parameters. 

3. Data Generator: 
For efficiently handling large image data we are using keras to load and preprocess 
the image in mini-batches during training phase. This helped the model’s 
generalization. 
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4.  Image Cropping:  
Due to memory limitations, the large images (4096x4096) were cropped into smaller 
patches during training. These patches, with a size of 256x256, were used to train the 
model efficiently. During inference, the full-sized images can be processed in patches 
and combined back together to generate the complete output. 

5.  Hybrid Fourier-CNN Input:  
For the hybrid Fourier-CNN integration, the bottleneck feature map of the U-Net 
encoder was transformed using the 2D Fourier Transform. The inverse Fourier 
Transform was then applied to the generated images during the decoding process to 
combine the frequency domain information with the spatial domain. 
These preprocessing steps is aimed to improve the model's robustness, handling of 
large images, and effective utilization of the Fourier-CNN integration technique. 
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U-Net Architecture and Components and Modifications: 
 
The U-Net architecture is a widely used convolutional neural network (CNN) 
architecture that was originally designed for biomedical image segmentation tasks. It 
is known for its effectiveness in image-to-image translation problems, particularly in 
tasks where the input and output images have a spatial correspondence. The 
architecture is characterized by its U-shape, which consists of an encoder pathway 
and a decoder pathway. 
 

 
 

1. Encoder Pathway: 
 

• The encoder is responsible for capturing hierarchical feature representations 
from the input image. It consists of a series of down-sampling layers that 
reduce the spatial dimensions of the input image while increasing the 
number of channels, effectively capturing high-level features. 

• In this project, the encoder pathway is built using repeated blocks of 
Convolutional layers, BatchNormalization layers, and Activation functions. 
The Convolutional layers learn different feature maps, and 
BatchNormalization ensures stable training by normalizing the inputs. ReLU 
(Rectified Linear Unit) is used as the activation function, introducing non-
linearity. 

 
2. Decoder Pathway: 

 

• The decoder is responsible for upsampling the feature maps back to the 
original spatial dimensions, generating the output that has the same size as 
the input. It mirrors the encoder pathway, but with up-sampling layers 
(instead of down-sampling) to recover spatial resolution. 
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• In this project, the decoder pathway is built using repeated blocks of 
UpSampling2D layers followed by Convolutional layers, BatchNormalization, 
and Activation functions. The UpSampling2D layer increases the spatial 
dimensions, and Convolutional layers help refine the feature maps to match 
the input image resolution. 

 
3. Skip Connections: 

 

• One of the key innovations in the U-Net architecture is the use of skip 
connections between the encoder and decoder pathways. These connections 
allow the decoder to access feature maps from earlier layers in the encoder, 
which helps to preserve fine-grained spatial details and improve localization 
accuracy. 

• In this project, the skip connections are implemented using Concatenate 
layers that concatenate the feature maps from the encoder with the 
corresponding up-sampled feature maps from the decoder. This process 
ensures that the decoder can utilize both high-level and low-level features 
during image generation. 

 
4. Final Output: 

• The final output of the U-Net is a segmentation map or image that has the 
same dimensions as the input image. In this project, the U-Net is modified 
to produce color images with three channels (RGB) as the final output. 

 
5. Fourier-CNN Integration: 

 

• In this project, the U-Net architecture is integrated with Fourier-CNN to 
combine the power of convolutional neural networks with Fourier 
Transform operations. The Fourier-CNN integration allows the network to 
work with both the spatial and frequency domains of the images. 

• The Fourier-CNN integration is achieved by converting the output tensor of 
the U-Net encoder to a complex data type and applying Fourier Transform 
and Inverse Fourier Transform operations. The magnitude of the Inverse 
Fourier Transform output is then combined with the U-Net decoder 
pathway using Convolutional layers. 

 
Overall, to the U-Net architecture with Fourier-CNN integration in this project 
enables the generator to effectively capture spatial and frequency features 
from the input images, leading improved image generation performance for 
the specific task of rectifying blurred images. The skip connections and the 
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combination of spatial and frequency domain information allow the network 
to generate visually appealing and coherent color images as the final output. 

 

Hybrid Fourier-CNN integration technique: 
 
The hybrid Fourier-CNN integration technique combines the power of Convolutional 
Neural Networks (CNNs) with the capabilities of the Fourier Transform to improve 
image generation or translation tasks. In this approach, the generator network 
incorporates both traditional CNN layers and operations involving the Fourier 
Transform to process the input data. 
 

1. Encoder (CNN): 

• The encoder part of the generator follows a traditional CNN 
architecture. It consists of a series of Conv2D layers with 
BatchNormalization and ReLU activation functions. The encoder's 
purpose is to extract hierarchical features from the input images, 
similar to a standard U-Net encoder. 

 
2. Fourier Transform (Frequency Domain): 

• After the encoder's final Conv2D layer, the output feature maps are 
converted to a complex data type. The complex-valued tensor is 
necessary to perform the Fourier Transform. 

 
3. Fourier Transform (Frequency Domain) and Inverse Fourier Transform (Spatial 
Domain): 

• The complex-valued feature maps from the encoder are then passed 
through the Fourier Transform operation. The Fourier Transform 
converts the image from the spatial domain to the frequency domain, 
revealing the frequency components and patterns present in the 
image. 

• Subsequently, the Inverse Fourier Transform is applied to the 
frequency domain representation. The Inverse Fourier Transform 
converts the frequency domain back to the spatial domain. This step 
is crucial as it ensures that the generator can still produce a 
meaningful spatial output. 
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4. Magnitude Combination (CNN): 

• After the Inverse Fourier Transform, the magnitude (absolute value) 
of the resulting complex-valued tensor is computed. The magnitude 
represents the strength of different frequency components in the 
image. 

• The magnitude tensor is then combined with the decoder pathway, 
which consists of CNN layers for upsampling and refining the feature 
maps. 

 
5. Decoder (CNN): 

 

• The decoder part of the generator follows a traditional CNN architecture. It 
consists of repeated blocks of Conv2D layers with BatchNormalization and 
ReLU activation functions, along with upsampling layers (UpSampling2D) to 
recover spatial resolution. 

 
6. Output Layer (CNN): 

• The output of the generator is produced by a final Conv2D layer with 
a sigmoid activation function. The output is an RGB image with three 
channels, similar to the input. 

The integration of Fourier Transform operations allows the generator to work 
simultaneously in the spatial and frequency domains. By combining the strengths of 
both domains, the generator is better equipped to handle complex image-to-image 
translation tasks. It can capture fine-grained spatial details through CNN layers while 
leveraging the frequency domain to process image features in a different manner. 
Overall, the hybrid Fourier-CNN integration technique in the generator enables it to 
generate high-quality and visually appealing color images while efficiently handling 
the rectification of blurred input images. 
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Architecture Details: 

 
The Generator and Discriminator Networks: 

 

Generator Network: 
 

The generator network is responsible for taking an input image and generating a 
corresponding output image that is rectified from blur. It follows a U-Net-like 
architecture with additional integration of Fourier Transform operations. 
 
1. Encoder (Downsampling Pathway): 

• The encoder is designed to downsample the input image and capture 
hierarchical features. It consists of repeated blocks of Conv2D layers 
with BatchNormalization (BN) and Rectified Linear Unit (ReLU) 
activation functions. The number of filters in the Conv2D layers 
increases progressively in the downsampling process. 

2. Fourier Transform (Frequency Domain): 

• After the encoder, the final Conv2D layer's output is converted to a 
complex data type using `tf.cast` operation. This is a crucial step as it 
allows the subsequent Fourier Transform operation to be applied to 
the complex-valued tensor. 

3. Fourier Transform and Inverse Fourier Transform (Frequency to Spatial Domain): 

• The complex-valued tensor obtained from the encoder is passed 
through the Fourier Transform (`tf.signal.fft2d`) operation to convert 
it from the spatial domain to the frequency domain. 

• Subsequently, the Inverse Fourier Transform (`tf.signal.ifft2d`) 
operation is applied to the frequency domain representation, 
converting it back to the spatial domain. This step ensures that the 
generator can produce meaningful spatial outputs. 

4. Magnitude Combination (Upsampling Pathway): 

• After the Inverse Fourier Transform, the magnitude (absolute value) 
of the complex-valued tensor is computed using `tf.abs(ifft)` function. 
The magnitude represents the strength of different frequency 
components in the image. 

• The magnitude tensor is concatenated with the decoder pathway's 
feature maps to introduce the Fourier domain information into the 
upsampling process. 
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5. Decoder (Upsampling Pathway): 

• The decoder is designed to upsample the combined feature maps 
from the magnitude and the encoder, refining the information to 
generate the final rectified image. It consists of repeated blocks of 
Conv2D layers with BatchNormalization and ReLU activation 
functions, along with upsampling layers (UpSampling2D) to recover 
spatial resolution. 

 
6. Output Layer: 

• The output of the generator is produced by a final Conv2D layer with 
a sigmoid activation function. The output is an RGB image with three 
channels, similar to the input. 

 

Discriminator Network: 
 

The discriminator network is responsible for distinguishing between real images and 
images generated by the generator. It follows a CNN architecture and is trained to 
provide a binary classification for the input images. The discriminator consists of the 
following components: 
 
1. Convolutional Layers: 
   The discriminator begins with Conv2D layers with different numbers of filters and a 
stride of 2, which effectively downsample the input image. This is followed by 
LeakyReLU activation functions with a small negative slope (alpha=0.2) to introduce 
non-linearity. 
 
2. Flatten and Dense Layers: 
   The feature maps from the convolutional layers are flattened and passed through 
dense (fully connected) layers. These dense layers help in reducing the number of 
units and capturing higher-level features for discrimination. 
 
3. Output Layer: 
   The output layer of the discriminator is a single neuron with a sigmoid activation 
function, producing a value between 0 and 1. This value represents the probability 
that the input image is a real image (1) or a generated image (0). 
The generator and discriminator networks are trained together as part of a GAN 
(Generative Adversarial Network) framework. The generator aims to produce images 
that can deceive the discriminator into believing they are real, while the 
discriminator is trained to become better at distinguishing real images from 
generated ones. This adversarial training process leads to the generator becoming 
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better at producing realistic-looking rectified images, while the discriminator 
becomes better at distinguishing real images from generated ones. 

 

 

The Structure of Each Layer: 
 

Generator Network: 
 
1. Input Layer (Conv2D): 

• Number of Filters: 64 

• Kernel Size: (3, 3) 

• Padding: 'same' 

• Activation Function: ReLU 
 
2. Encoder (Downsampling Pathway): 
   - Number of Blocks: 2 
   - Each Block consists of two consecutive Conv2D layers with BatchNormalization and ReLU 
activation. 
 

• Block 1: 
▪ Number of Filters: 64 -> 128 
▪ Kernel Size: (3, 3) for both Conv2D layers 
▪ Padding: 'same' for both Conv2D layers 
▪ Activation Function: ReLU for both Conv2D layers 

 

• Block 2: 
▪ Number of Filters: 128 -> 256 
▪ Kernel Size: (3, 3) for both Conv2D layers 
▪ Padding: 'same' for both Conv2D layers 
▪ Activation Function: ReLU for both Conv2D layers 

 
3. Fourier Transform (Frequency Domain): 

• The output tensor from the encoder is converted to a complex data type using ‘tf.cast’ 
to prepare for the Fourier Transform. 

 
4. Fourier Transform and Inverse Fourier Transform (Frequency to Spatial Domain): 

• The complex-valued tensor is passed through the Fourier Transform using 
‘tf.signal.fft2d’ to convert it to the frequency domain. 

• The Inverse Fourier Transform is then applied using ‘tf.signal.ifft2d’ to convert it back 
to the spatial domain. 
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5. Magnitude Combination (Upsampling Pathway): 

• The magnitude (absolute value) of the complex-valued tensor is computed using 
‘tf.abs(ifft)’ to extract the strength of frequency components. 

 
 
6. Decoder (Upsampling Pathway): 
   Number of Blocks: 2 
   Each Block consists of two consecutive Conv2D layers with BatchNormalization and ReLU 
activation. 
 

• Block 1: 
▪ Number of Filters: 256 -> 128 
▪ Kernel Size: (3, 3) for both Conv2D layers 
▪ Padding: 'same' for both Conv2D layers 
▪ Activation Function: ReLU for both Conv2D layers 

 

• Block 2: 
▪ Number of Filters: 128 -> 64 
▪ Kernel Size: (3, 3) for both Conv2D layers 
▪ Padding: 'same' for both Conv2D layers 
▪ Activation Function: ReLU for both Conv2D layers 

 
7. Output Layer (Conv2D): 

• Number of Filters: 3 (RGB channels) 

• Kernel Size: (1, 1) 
• Activation Function: Sigmoid 

 

Discriminator Network: 
 
1. Input Layer (Conv2D): 

• Number of Filters: 16 

• Kernel Size: (3, 3) 

• Strides: (2, 2) 

• Padding: 'same' 

• Activation Function: LeakyReLU (alpha=0.2) 
 
2. Convolutional Layers: 

➢ Number of Blocks: 4 
➢ Each Block consists of one Conv2D layer with BatchNormalization and LeakyReLU 

activation. 

• Block 1: 
▪ Number of Filters: 16 -> 32 
▪ Kernel Size: (3, 3) for the Conv2D layer 
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▪ Strides: (2, 2) for the Conv2D layer 
▪ Padding: 'same' for the Conv2D layer 
▪ Activation Function: LeakyReLU (alpha=0.2) for the Conv2D layer 

• Block 2: 
▪ Number of Filters: 32 -> 64 
▪ Kernel Size: (3, 3) for the Conv2D layer 
▪ Strides: (2, 2) for the Conv2D layer 
▪ Padding: 'same' for the Conv2D layer 
▪ Activation Function: LeakyReLU (alpha=0.2) for the Conv2D layer 

• Block 3: 
▪ Number of Filters: 64 -> 128 
▪ Kernel Size: (3, 3) for the Conv2D layer 
▪ Strides: (2, 2) for the Conv2D layer 
▪ Padding: 'same' for the Conv2D layer 
▪ Activation Function: LeakyReLU (alpha=0.2) for the Conv2D layer 

• Block 4: 
▪ Number of Filters: 128 -> 256 
▪ Kernel Size: (3, 3) for the Conv2D layer 
▪ Strides: (2, 2) for the Conv2D layer 
▪ Padding: 'same' for the Conv2D layer 
▪ Activation Function: LeakyReLU (alpha=0.2) for the Conv2D layer 

 
3. Flatten and Dense Layers: 

• The feature maps from the convolutional layers are flattened, and then they pass 
through a Dense layer. 

• Number of Units in Dense Layer: 16 

• Activation Function: ReLU 
 
4. Output Layer (Dense): 

• Number of Units: 1 (Binary Classification) 

• Activation Function: Sigmoid 
 
Both the generator and discriminator networks have specific architectural designs tailored 
for the image rectification task and binary image classification, respectively. These 
architectures are designed to work together within the GAN framework to facilitate the 
adversarial training process for image rectification. 
 

 

 

 

 



22 
 

Model Training: 

The Training Process: 

 
The training process in Generative Adversarial Network (GAN) composed of a generator and 
a discriminator. The GAN is trained to perform image rectification, where the generator is 
tasked with generating high-quality rectified images, and the discriminator's role is to 
distinguish between real (ground truth) images and generated (rectified) images. 
 

Optimization Algorithm and Learning Rate: 

 
The GAN is trained using the Adam optimization algorithm, a popular variant of stochastic 
gradient descent (SGD). Adam combines the advantages of both AdaGrad and RMSprop 
algorithms and is well-suited for non-stationary objectives and large datasets. 
The learning rate used for both the generator and discriminator is 0.0002. This learning rate 
is a hyperparameter that controls the step size taken during gradient descent, impacting the 
speed and stability of the training process. 
 

Training Process: 
 
1. Data Preparation: 

• The dataset is preprocessed and divided into training, testing, and validation sets. 
Images are loaded, resized to (256, 256), and normalized to values between 0 and 1 

 
2. Model Compilation: 

• The generator and discriminator networks are built using the specified 
architectures. 

• The GAN model is constructed by connecting the hybrid generator and the 
discriminator, with the discriminator's weights set as non-trainable. 

 
3. Data Generators: 

• Custom data generators are created to efficiently load and provide batches of 
training data during each epoch. These generators help prevent memory overflow 
during training. 

 
4. Training Loop: 

• The training process consists of several epochs, where each epoch represents a 
complete iteration over the entire training dataset. 

• For each epoch, the following steps are performed: 

• The training dataset is shuffled, and batches of data are fed to the GAN model 
using the data generator. 
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• For each batch, random blur input is generated to act as a latent space 
representation for the generator to create rectified images. 

• The generator is trained to minimize the binary cross-entropy loss against the 
discriminator, aiming to generate realistic rectified images. The discriminator's 
weights are frozen during this phase. 

• The discriminator is trained separately to distinguish between real and generated 
images by minimizing the binary cross-entropy loss. 

• The losses of both the generator and discriminator are printed for each batch 
during training. 
 

5. Model Evaluation: 

• The trained GAN is evaluated on the test set using the ‘gan.evaluate’ function, 
which computes the loss of the GAN model on the test data. 
 

6. Saving the Model: 

• The weights of the generator model are saved after each epoch to maintain the 
best performing generator. 

 
Overall, the GAN is trained in an adversarial manner, with the generator attempting to 
produce more realistic rectified images to deceive the discriminator, while the 
discriminator aims to better distinguish real images from generated ones. This competitive 
training process ultimately leads to the generator producing higher-quality rectified 
images as the training progresses. 

 
 

Loss Function: 

 
The loss function used for both the generator and discriminator in this GAN is the Binary 
Cross-Entropy (BCE) loss. 
 

Generator Loss Function: 
 

For the generator, the BCE loss is used to measure how well it can deceive the 
discriminator. The objective of the generator is to generate realistic images that are similar 
to the real images in the training dataset. The BCE loss penalizes the generator based on 
how far the generated images are from being classified as real by the discriminator. 
 

Discriminator Loss Function: 

 
For the discriminator, the BCE loss is used to measure how well it can distinguish between 
real images from the training dataset and generated (fake) images produced by the 
generator. The discriminator aims to correctly classify real images as real (label 1) and 
generated images as fake (label 0). 
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In both cases, the BCE loss is computed as the binary cross-entropy between the predicted 
probabilities and the target labels: 

• For the generator, the target labels are all ones, indicating that the generator wants 
the discriminator to classify its generated images as real. 

• For the discriminator, the target labels for real images are ones, and for generated 
images, the target labels are zeros. 

The BCE loss is a standard choice for GANs and is commonly used for binary classification 
problems like the discriminator's task in distinguishing real and fake images. It is an 
effective loss function for guiding the training process of both the generator and 
discriminator in adversarial learning. 
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Results and Evaluation: 
 

In this section, we present the results and evaluation of our trained model. The model was trained 
using BLUR IMAGE RECTIFIER and it uses U-Net architecture for a total of 10 epochs. Due to time 
constraints for the project presentation, we were only able to complete one epoch of training. As a 
result, the presented results are preliminary and may not fully represent the model's potential 
performance. 
 
Quantitative Results (After One Epoch): 
Generator Loss: 0.73 
Discriminator Loss: 1.36 
The quantitative results show the loss values of the generator and discriminator after the first 
epoch of training. As the model has been trained for only one epoch, these values might not have 
fully converged and may not reflect the optimal performance of the model. Unfortunately, we do 
not have specific accuracy metrics available at this stage. 
 
Qualitative Results: 
Since we only have one epoch of training, we focus on qualitative assessment to provide insights 
into the model's performance: 
 
Loss Trends: During the first epoch, both the generator and discriminator losses showed a 
decreasing trend, indicating that the models were learning from the data. Further training would be 
required to assess if these trends continue and lead to more optimal results. 
 
Generated Outputs: We observed several generated outputs from the generator during the initial 
epoch. While some outputs showed promising signs of resemblance to real data, others appeared 
incomplete or lacked coherence. These preliminary results suggest that the generator might need 
further training to produce higher quality outputs. 
 
Discriminator Performance: The discriminator's loss showed a decreasing trend as well, indicating 
it was improving in distinguishing between real and generated data. However, additional training 
would be necessary to evaluate the discriminator's performance more comprehensively. 

 

 
 

SSIM Score: 0.8518099373712923 
MSE Score: 20.206517641902256 



26 
 

Challenges and Limitations: 

 
Challenges Faced During the Project and Mitigation Strategies: 
 

Memory Constraints: One of the primary challenges encountered during the project was 
memory limitations. The dataset size and image resolution proved to be computationally 
expensive, leading to frequent memory errors during training. To address this, we had to 
make compromises by reducing the image resolution and dataset size. While this helped in 
avoiding memory issues, it may have impacted the overall quality of the results. 
Training Time: Another significant challenge was the extended training time required for 
complex models like ours. Due to time constraints for the project presentation, we were 
only able to complete one epoch of training. This limited training duration might not have 
been sufficient for the model to fully converge, leading to suboptimal results. 
 

 
 

Hyperparameter Tuning: Fine-tuning the hyperparameters of deep learning models can be 
a time-consuming process. Limited time and computational resources prevented us from 
exhaustively tuning the hyperparameters, potentially affecting the model's performance. 
 

Limitations and Potential Shortcomings: 

 
Quality of Results: Due to the constrained training duration and the need to reduce image 
resolution and dataset size, the quality of the generated outputs may be compromised. The 
model might not have had enough time to learn complex patterns in the data fully, leading 
to less realistic and coherent generated samples. 
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Generalization: With just one epoch of training, it is challenging to evaluate the model's 
generalization capabilities. The model may not perform well on unseen or real-world data, 
as it might have only memorized the training data without capturing the underlying 
patterns effectively. 
Insufficient Training: One epoch of training is not enough to gauge the model's true 
potential. To achieve more reliable and representative results, the model would require 
more epochs and careful monitoring of loss convergence and overfitting. 
Model Complexity: The chosen model architecture might be insufficiently complex for the 
task at hand. More sophisticated architectures or pre-trained models could potentially yield 
better results, but these were not explored due to time constraints. 
Evaluation Metrics: With just one epoch of training, we lack comprehensive evaluation 
metrics such as accuracy and diversity measurements for generative models. These metrics 
are essential for quantifying the model's performance effectively. 
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Future Work: 

 
Despite the challenges and limitations faced during the current project, there are several 
potential avenues for future work and improvements that could enhance the model's 
performance and broaden its applicability.  
 

Extended Training and Hyperparameter Optimization: 
To achieve better model performance, we plan to conduct extended training sessions and 
explore more comprehensive hyperparameter optimization. Increasing the number of 
training epochs and tuning hyper parameters can lead to improved convergence and 
enhanced model accuracy. 

 

Pre-trained Models: 
Utilizing pre-trained models as a starting point can significantly benefit the training process. 
We aim to investigate transfer learning techniques and explore pre-trained models that are 
relevant to our specific task. Fine-tuning a pre-trained model on our dataset could 
potentially accelerate convergence and boost performance. 

 

Model Architecture Exploration: 
Continuing the search for more sophisticated model architectures could lead to significant 
improvements. We plan to explore cutting-edge architectures that are specifically designed 
for the type of data and task we are working on. 

 

Ensemble Methods: 
Ensemble methods, such as combining the outputs of multiple models, could be explored to 
leverage the strengths of different architectures. Ensemble techniques have shown 
promising results in improving model robustness and performance. 

 

Performance Metrics: 
To obtain a more comprehensive evaluation, we will incorporate additional performance 
metrics such as accuracy, precision, recall, and F1-score. These metrics will provide a clearer 
picture of the model's effectiveness on the specific task. 

 

Real-world Data Evaluation: 
It is crucial to evaluate the model's performance on real-world data to assess its practical 
applicability. Collecting and testing the model on diverse real-world samples can reveal its 
ability to generalize to new, unseen data. 
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Hardware Upgrades: 
Upgrading the computational resources, such as GPU memory and processing power, can 
facilitate training larger models and handling higher-resolution data without compromising 
performance. 

 

Cross-validation: 
Implementing cross-validation techniques can provide a more reliable estimate of the 
model's performance and help identify potential overfitting issues. 

 

Model Interpretability: 
Exploring techniques for model interpretability will enhance our understanding of how the 
model makes decisions and provide insights into its inner workings. 
Incorporating these future work directions will contribute to the development of a more 
robust and effective model, ultimately bringing us closer to achieving the initial objectives 
of the project. Through continuous research and iterative improvements, we are committed 
to advancing the state of the art in this field and making meaningful contributions to the 
domain. 
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Conclusion: 

 
This project aimed to develop a powerful image rectification and enhancement model. We 
embarked on this journey with the aspiration to create a successful and effective model for 
working in real world scenarios that could remove blur from digital images. 
 

Key Findings and Outcomes: 
Throughout the project, we encountered various challenges and limitations that impacted 
the progress and performance of our model. Due to time constraints and the complexity of 
the task, we were only able to complete one epoch of training, which hindered the model's 
ability to fully converge and achieve optimal results. 
Despite the effort invested, the preliminary results indicate that the model's performance 
did not meet our expectations. The generated outputs were of compromised quality due to 
the need to reduce image resolution and dataset size to avoid memory errors during 
training. Additionally, the model's generalization capabilities and suitability for real-world 
applications were not thoroughly evaluated, further contributing to its limitations. 
 

Success in Achieving Objectives: 
While the project faced significant challenges and did not achieve the desired outcomes, it 
provided valuable insights and lessons learned. The exploration of the feasibility study 
highlighted the importance of comprehensive planning, resource assessment, and model 
complexity considerations before initiating a deep learning project. 
 
Though the model's current state may not fulfil the initial project objectives, the experience 
gained during this journey has been invaluable. The understanding of the pitfalls 
encountered during the development process will serve as a foundation for future 
endeavours in the field. 
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During the development of this project, we relied on various sources of information and 
tools to guide our research and implementation.  
 

1. OpenAI ChatGPT : https://chat.openai.com/ 

• ChatGPT is a large language model chatbot developed by OpenAI. It can generate 
human-like text based on context and past conversations. 

 

2. Google BARD: https://bard.google.com/ 

• Bard is a large language model chatbot developed by Google. It can generate 
different creative text formats, like poems, code, scripts, musical pieces, email, 
letters, etc.. 

 

3. Stack Overflow: https://stackoverflow.com/ 

• Stack Overflow proved to be an invaluable resource for troubleshooting and 
seeking solutions to specific coding challenges and implementation issues. 

 

4. ResearchGate: https://www.researchgate.net/ 

• ResearchGate provided access to various research papers and academic 
publications, which helped us understand the state-of-the-art in the field and 
obtain valuable insights into model architectures and techniques. 

 

5. TensorFlow Documentation: https://www.tensorflow.org/ 

• The official TensorFlow documentation served as a comprehensive reference for 
understanding TensorFlow functionalities and usage. 

 

6. GitHub repositories and community contributions: 

• We utilized various open-source projects and community-contributed code on 
GitHub to learn from existing implementations and adapt them for our project's 
needs. 
 

As part of our commitment to academic integrity and proper citation, we ensured to 
attribute relevant information, code snippets, and concepts from the above sources 
appropriately in our project documentation and code comments. 
We acknowledge the contributions of the developers, researchers, and open-source 
community, without whom this project would not have been possible. The references 
mentioned above have been instrumental in guiding our understanding, shaping our 
implementation, and laying the foundation for future developments in this domain. 
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